
Journal of Geometry and Physics 50 (2004) 99–114

Boolean coverings of quantum observable
structure: a setting for an abstract differential

geometric mechanism

Elias Zafiris∗
Faculty of Mathematics and Informatics, University of Sofia, Blvd. James Bourchier, 1164 Sofia, Bulgaria

Received 20 June 2003; received in revised form 26 November 2003; accepted 27 November 2003

Abstract

We develop the idea of employing localization systems of Boolean coverings, associated with
measurement situations, in order to comprehend structures of quantum observables. In this manner,
Boolean domain observables constitute structure sheaves of coordinatization coefficients in the
attempt to probe the quantum world. Interpretational aspects of the proposed scheme are discussed
with respect to a functorial formulation of information exchange, as well as, quantum logical
considerations. Finally, the sheaf theoretical construction suggests an operationally intuitive method
to develop differential geometric concepts in the quantum regime.
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1. Introduction

The main guiding idea in our investigation is based on the employment of objects belong-
ing to the Boolean species of observable structure, as covers, for the understanding of the
objects belonging to the quantum species of observable structure. The language of Category
theory[1,2] proves to be suitable for the implementation of this idea in a universal way.
The conceptual essence of this scheme is the development of a sheaf theoretical perspective
[3,4] on quantum observable structures.
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The physical interpretation of the categorical framework makes use of the analogy with
geometric manifold theory. Namely, it is associated with the development of a Boolean
manifold picture that takes place through the identification of Boolean charts in systems of
localization for quantum event algebras with reference frames, relative to which the results
of measurements can be coordinatized. In this sense, any Boolean chart in a localization
system covering a quantum algebra of events, corresponds to a set of Boolean events which
become realizable in the experimental context of a measurement situation. This identifica-
tion amounts to the introduction of a relativity principle in quantum theory, suggesting a
contextual interpretation of its descriptive apparatus.

In quantum logical approaches the notion of event, associated with the measurement of
an observable is taken to be equivalent to a proposition describing the behavior of a physical
system. This formulation of quantum theory is based on the identification of propositions
with projection operators on a complex Hilbert space. In this sense, the Hilbert space for-
malism of quantum theory associates events with closed subspaces of a separable, complex
Hilbert space corresponding to a quantum system. Then, the quantum event algebra is iden-
tified with the lattice of closed subspaces of the Hilbert space, ordered by inclusion and
carrying an orthocomplementation operation which is given by the orthogonal complements
of the closed subspaces[5,6]. Equivalently it is isomorphic to the partial Boolean algebra
of closed subspaces of the Hilbert space of the system, or alternatively the partial Boolean
algebra of projection operators of the system[7].

We argue that the set theoretical axiomatizations of quantum observable structures hides
the intrinsic significance of Boolean localizing systems in the formation of these structures.
Moreover, the operational procedures followed in quantum measurement are based explic-
itly in the employment of appropriate Boolean environments. The construction of these
contexts of observation are related with certain abstractions and can be metaphorically con-
sidered as pattern recognition arrangements. In the categorical language we adopt, we can
explicitly associate them with appropriate Boolean coverings of the structure of quantum
events. In this way, the real significance of a quantum structure proves to be, not at the
level of events, but at the level of gluing together observational contexts. The main thesis of
this paper is that the objectification of a quantum observable structure takes place through
Boolean reference frames that can be pasted together using category theoretical means.
Contextual topos theoretical approaches to quantum structures have been considered, from
a different viewpoint in[8,9], and discussed in[10–12].

In Section 2we define event and observable structures in a category theoretical language.
In Section 3we introduce the functorial concepts of Boolean coordinatizations and Boolean
observable presheaves, and also, develop the idea of fibrations over Boolean observables.
In Section 4we prove the existence of an adjunction between the topos of presheaves
of Boolean observables and the category of quantum observables. InSection 5we define
systems of localization for measurement of observables over a quantum event algebra. In
Section 6we talk about isomorphic representations of quantum algebras in terms of Boolean
localization systems using the adjunction established. InSection 7we examine the conse-
quences of the scheme related to the interpretation of the logic of quantum propositions. In
Section 8we discuss the implications of covering systems in relation to the possibility of
development of a differential geometric machinery suitable for the quantum regime. Finally,
we summarize the conclusions inSection 9.
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2. Event and observable structures as categories

A Quantum event structure is a category, denoted byL, which is called the category of
quantum event algebras.

Its objects, denoted byL, are quantum algebras of events, that is orthomodularσ-ortho-
posets. More concretely, each objectL inL, is considered as a partially ordered set of quan-
tum events, endowed with a maximal element 1, and with an operation of orthocomplementa-
tion [−]∗ : L → L, which satisfy, for alll ∈ L, the following conditions: (a)l ≤ 1, (b)l∗∗ =
l, (c) l∨ l∗ = 1, (d)l ≤ ĺ ⇒ ĺ∗ ≤ l∗, (e)l ⊥ ĺ ⇒ l∨ ĺ ∈ L, (f) for l, ĺ ∈ L, l ≤ ĺ implies that
l andĺ are compatible, where 0 := 1∗, l ⊥ ĺ := l ≤ ĺ∗, and the operations of meet∧ and join
∨ are defined as usually. We also recall thatl, ĺ ∈ Lare compatible if the sublattice generated
by {l, l∗, ĺ, ĺ∗} is a Boolean algebra, namely if it is a Boolean sublattice. Theσ-completeness
condition, namely that the join of countable families of pairwise orthogonal events must
exist, is also required in order to have a well-defined theory of observables overL.

Its arrows are quantum algebraic homomorphisms, that is mapsK −→H L, which satisfy,
for all k ∈ K, the following conditions: (a)H(1) = 1, (b)H(k∗) = [H(k)]∗, (c) k ≤ ḱ ⇒
H(k) ≤ H(ḱ), (d) k ⊥ ḱ ⇒ H(k ∨ ḱ) ≤ H(k) ∨ H(ḱ), (e)H(

∨
n kn) = ∨

n H(kn), where
k1, k2, . . . countable family of mutually orthogonal events.

A Classical event structure is a category, denoted byB, which is called the category of
Boolean event algebras. Its objects areσ-Boolean algebras of events and its arrows are the
corresponding Boolean algebraic homomorphisms.

The notion of observable corresponds to a physical quantity that can be measured in
the context of an experimental arrangement. In any measurement situation the propositions
that can be made concerning a physical quantity are of the following type: the value of the
physical quantity lies in some Borel set of the real numbers. A proposition of this form
corresponds to an event as it is apprehended by an observer using his measuring instrument.
An observableΞ is defined to be an algebraic homomorphism from the Borel algebra of
the real line Bor(R) to the quantum event algebraL.

Ξ : Bor(R) → L

such that (i)Ξ(∅) = 0, Ξ(R) = 1, (ii) E
⋂

F = ∅ ⇒ Ξ(E) ⊥ Ξ(F) for E,F ∈ Bor(R),
(iii) Ξ(

⋃
n En) = ∨

n Ξ(En), whereE1, E2, . . . sequence of mutually disjoint Borel sets
of the real line.

If L is isomorphic with the orthocomplemented lattice of orthogonal projections on a
Hilbert space, then it follows from von Neumann’s spectral theorem that the observables
are in 1–1 correspondence with the hypermaximal Hermitian operators on the Hilbert space.

A Quantum observable structure is a category, denoted byOQ, which is called the
category of quantum observables. Its objects are the quantum observablesΞ : Bor(R) → L

and its arrowsΞ → Θ are the commutative triangles (Fig. 1), or equivalently the quantum
algebraic homomorphismsL −→H K in L, preserving by definition the join of countable
families of pairwise orthogonal events, such thatΘ = H ◦ Ξ in Fig. 1 is again a quantum
observable.

Correspondingly, aBoolean observable structure is a category, denoted byOB, which
is called the category of Boolean observables. Its objects are the Boolean observablesξ :
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Fig. 1.

Fig. 2.

Bor(R) → B and its arrows are the Boolean algebraic homomorphismsB −→h C in B, such
thatθ = h ◦ ξ in Fig. 2 is again a Boolean observable.

3. Functorial formulation of observables

3.1. Presheaves of Boolean observables

If Oop
B is the opposite category ofOB, then SetsO

op
B denotes the functor category of

presheaves on Boolean observables. Its objects are all functorsX : Oop
B → Sets and its

morphisms are all natural transformations between such functors. Each objectX in this
category is a contravariant set-valued functor onOB, called a presheaf onOB.

For each Boolean observableξ ofOB, X(ξ) is a set, and for each arrowf : θ → ξ,X(f) :
X(ξ) → X(θ) is a set function. IfX is a presheaf onOB andx ∈ X(θ), the valueX(f)(x)

for an arrowf : θ → ξ in OB is called the restriction ofx alongf and is denoted by
X(f)(x) = x ◦ f .

Each objectξ of OB gives rise to a contravariant Hom-functory[ξ] := HomOB(−, ξ).
This functor defines a presheaf onOB. Its action on an objectθ of OB is given by:

y[ξ](θ) := HomOB(θ, ξ),

whereas its action on a morphismη −→w θ, for v : θ → ξ is given by

y[ξ](w) : HomOB(θ, ξ) → HomOB(η, ξ), y[ξ](w)(v) = v ◦ w.

Furthermore,y can be made into a functor fromOB to the contravariant functors onOB

y : OB → SetsO
op
B

such thatξ �→ HomOB(−, ξ). This is an embedding and it is a full and faithful functor.
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The functor category of presheaves on Boolean observablesSetsO
op
B provides an instan-

tiation of a structure known as topos. A topos exemplifies a well-defined notion of variable
set. It can be conceived as a local mathematical framework corresponding to a generalized
model of set theory or as a generalized space. Moreover, it provides a natural example of a
many-valued truth structure, which remarkably is not ad hoc, but reflects genuine constraints
of the surrounding universe.

3.2. The Grothendieck fibration technique

SinceOB is a small category, there is a set consisting of all the elements of all the sets
X(ξ), and similarly there is a set consisting of all the functionsX(f). This observation
regardingX : Oop

B → Sets permits us to take the disjoint union of all the sets of the form
X(ξ) for all objectsξ of OB. The elements of this disjoint union can be represented as
pairs(ξ, x) for all objectsξ of OB and elementsx ∈ X(ξ). Thus the disjoint union of sets
is made by labeling the elements. Now we can construct a category whose set of objects
is the disjoint union just mentioned. This structure is called the category of elements of
the presheafX, denoted byG(X,OB). Its objects are all pairs(ξ, x), and its morphisms
(ξ́, x́) → (ξ, x) are those morphismsu : ξ́ → ξ of OB for which xu = x́. Projection on
the second coordinate ofG(X,OB) defines a functorGX : G(X,OB) → OB. G(X,OB)

together with the projection functorGX is called the split discrete fibration induced by
X, andOB is the base category of the fibration. We note that the fibration is discrete
because the fibers are categories in which the only arrows are identity arrows. Ifξ is a
Boolean observable object ofOB, the inverse image underGX of ξ is simply the setX(ξ),
although its elements are written as pairs so as to form a disjoint union. The instantiation
of the fibration induced byX, is an application of the general Grothendieck construction
[13].

3.3. Boolean modeling functor

We define a modeling or coordinatization functorA : OB → OQ which assigns to
Boolean observables inOB (that plays the role of the model category) the underlying
quantum observables fromOQ, and to Boolean homomorphisms the underlying quantum
algebraic homomorphisms. HenceA acts as a forgetful functor, forgetting the extra Boolean
structure ofOB.

Equivalently, the coordinatization functor can be characterized as,A : B → L which
assigns to Boolean event algebras inB the underlying quantum event algebras fromL and
to Boolean homomorphisms the underlying quantum algebraic homomorphisms, such that
Fig. 3commutes.

3.4. Functorial relation of event with observable algebras

The categories of event algebras and observables are related functorialy as follows: under
the action of a modeling functor, Bor(R) may be considered as an object ofL. Hence, it
is possible to construct the covariant representable functorF : L→ Sets, defined byF =
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HomL(Bor(R),−). The application of the fibration technique on the functorF provides the
category of elements of this functor, which is the category of all arrows inL from the object
Bor(R), characterized equivalently as the comma category [Bor(R)/L]. We conclude that
the category of quantum observablesOQ is actually the comma category [Bor(R)/L] or,
equivalently, the category of elements of the functorF = HomL(Bor(R),−). Analogous
comments hold for the category of Boolean observables.

4. Adjointness between presheaves of Boolean observables and quantum observables

We consider the category of quantum observablesOQ and the modeling functorA, and
we define the functorR fromOQ to the topos of presheaves given by:

R(Ξ) : ξ �→ HomOQ(A(ξ),Ξ).

A natural transformationτ between the topos of presheaves on the category of Boolean
observablesX andR(Ξ), τ : X → R(Ξ) is a familyτξ indexed by Boolean observablesξ
of OB for which eachτξ is a map

τξ : X(ξ) → HomOQ(A(ξ),Ξ)

of sets, such that the diagram of sets (Fig. 4) commutes for each Boolean homomorphism
u : ξ́ → ξ of OB.

If we make use of the category of elements of the Boolean observables-variable set
X, being an object in the topos of presheaves, then the mapτξ, defined above, can be
characterized as

τξ : (ξ, p) → HomOQ(A ◦ GX(ξ, p),Ξ).

Fig. 4.
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Fig. 5.

Equivalently, such aτ can be seen as a family of arrows ofOQ which is being indexed by
objects(ξ, p) of the category of elements of the presheaf of Boolean observablesX, namely

{τξ(p) : A(ξ) → Ξ}(ξ,p).
From the perspective of the category of elements ofX, the condition of the commutativity
of Fig. 4 is equivalent with the condition that for each Boolean homomorphismu : ξ́ → ξ

of OB, Fig. 5commutes.
FromFig. 5we can see that the arrowsτξ(p) form a cocone from the functorA ◦ GX to

the quantum observable algebra objectΞ. Making use of the definition of the colimit, we
conclude that each such cocone emerges by the composition of the colimiting cocone with
a unique arrow from the colimitLX to the quantum observable objectΞ. In other words,
there is a bijection which is natural inX andΞ

Nat(X,R(Ξ)) ∼= HomOQ(LX, Ξ).

From the above bijection we are driven to the conclusion that the functorR fromOQ to the
topos of presheaves given by

R(Ξ) : ξ �→ HomOQ(A(ξ),Ξ)

has a left adjointL : SetsO
op
B → OQ, which is defined for each presheaf of Boolean

observablesX in SetsO
op
B as the colimit

L(X) = Colim{G(X,OB)
GX−→OB

A−→OQ}.

Consequently there is apair of adjoint functors L � R as follows:

L : Sets[[Bor(R)/B]] op � [Bor(R)/L] : R.

The adjunction, which will be the main interpretational tool in the proposed scheme,
consists of the functorsL andR, called left and right adjoints with respect to each other,
respectively, as well as the natural bijection

Nat(X,R(Ξ)) ∼= Hom[Bor(R)/L](LX, Ξ).
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Fig. 6.

As an application we may use asX the representable presheaf of the topos of Boolean
observablesy[ξ]. Then, the bijection defining the adjunction takes the form:

Nat(y[ξ],R(Ξ)) ∼= HomOQ(Ly[ξ], Ξ).

Because the functorX = y[ξ] is representable, the corresponding category of elements
G(y[ξ],OB) has a terminal object, that is, the element 1 :ξ → ξ of y[ξ](ξ). Therefore, the
colimit of the compositeA ◦ Gy[ξ] is going to be just the value ofA ◦ Gy[ξ] on the terminal
object. Thus, we have

Ly[ξ](ξ) ∼= A ◦ Gy[ξ](ξ,1ξ) = A(ξ).

In this way we provide a characterization ofA(ξ) as the colimit of the representable presheaf
on the category of Boolean observables.

Furthermore, the categorical syntax provides a representation of a colimit as a coequalizer
of a coproduct. This representation shows that the left adjoint functor of the adjunction is
like the tensor product−⊗[BorR/B] A [14]. More specifically, the coequalizer representation
of the colimitLX (Fig. 6) shows that the elements ofX⊗OB A, considered as a set endowed
with a quantum algebraic structure, are all of the formχ(p, q), or in a suggestive notation,

χ(p, q) = p ⊗ q, p ∈ X(ξ), q ∈ A(ξ)

satisfying the coequalizer conditionpv ⊗ q́ = p ⊗ vq́.

5. System of measurement localizations for quantum observables

The notion of a system of localizations for a quantum observable, which will be defined
subsequently, is based on the categorical idea that the quantum objectΞ inOQ is possible to
be comprehended by means of appropriate covering mapsξ → Ξ having as their domains
locally defined Boolean observablesξ in OB. It is obvious that any single map from any
modeling Boolean observable to a quantum observable is not sufficient to determine it
entirely and hence, it is a priori destined to contain only a limited amount of information
about it. This problem may be tackled only if we employ many structure preserving maps
from the modeling Boolean observables to a quantum observable simultaneously to cover
it completely.

A system of prelocalizations for quantum observableΞ in OQ is a subfunctor of the
Hom-functorR(Ξ) of the formS : Oop

B → Sets, namely for allξ in OB it satisfiesS(ξ) ⊆
[R(Ξ)](ξ). Hence a system of prelocalizations for quantum observableΞ in OQ is a set
S(ξ) of quantum algebraic homomorphisms of the form:

ψξ : A(ξ) → Ξ, ξ ∈ OB
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Fig. 7.

such that〈ψξ : A(ξ) → Ξ in S(ξ) andA(v) : A(ξ́) → A(ξ) in OQ for v : ξ́ → ξ in OB,
impliesψξ ◦ A(v) : A(ξ́) → OQ in S(ξ)〉.

According to the above definition, the functional role of the Hom-functorR(Ξ) is equiv-
alent to depicting a set of algebraic homomorphisms, in order to provide local coverings of
a quantum observable by coordinatizing Boolean objects. We may characterize the maps
ψξ : A(ξ) → Ξ, ξ ∈ OB in a system of prelocalizations for quantum observableΞ as
Boolean domain covers. Their domainsBΞ provide Boolean coefficients associated with
measurement situations. The introduction of the notion of a system of prelocalizations is
forced on the basis of operational physical arguments. According to Kochen–Specker theo-
rem it is not possible to understand completely a quantum mechanical system with the use
of a single system of Boolean devices. On the other side, in every concrete experimental
context, the set of events that have been actualized in this context forms a Boolean algebra.
Consequently, any Boolean domain object(BΞ, [ψB]Ξ : A(BΞ) → L) in a system of pre-
localizations for quantum event algebra, makingFig. 7commutative, corresponds to a set
of Boolean events that become actualized in the experimental context ofB. These Boolean
objects play the role of localizing devices in a quantum event structure that are induced
by measurement situations. The above observation is equivalent to the statement that a
measurement-induced Boolean algebra serves as a reference frame, in a topos-theoretical
environment, relative to which a measurement result is being coordinatized.

A family of Boolean observable coversψξ : A(ξ) → Ξ, ξ ∈ OB is the generator of
the system of prelocalizationS if this system is the smallest among all that contain that
family. It is evident that a quantum observable, and correspondingly the quantum event
algebra over which it is defined, can have many systems of measurement prelocalizations,
that, remarkably, form an ordered structure. More specifically, systems of prelocalization
constitute a partially ordered set under inclusion. We note that the minimal system is the
empty one, namelyS(ξ) = ∅ for all ξ ∈ OB, whereas the maximal system is the Hom-functor
R(Ξ) itself, or equivalently, all quantum algebraic homomorphismsψξ : A(ξ) → Ξ.

The transition from a system of prelocalizations to a system of localizations for a quantum
observable, can be realized if certain compatibility conditions are satisfied on the overlap of
the modeling Boolean domain covers. In order to accomplish this it is necessary to introduce
the categorical concept of pullback inOQ (Fig. 8).

The pullback of the Boolean domain coversψξ : A(ξ) → Ξ, ξ ∈ OB andψ
ξ́

: A(ξ́) →
Ξ, ξ́ ∈ OB with common codomain the quantum observableΞ, consists of the object
A(ξ)×ΞA(ξ́) and two arrowsψ

ξξ́
andψ

ξ́ξ
, called projections, as shown inFig. 8. The square

commutes and for any objectT and arrowsh andg that make the outer square commute,
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Fig. 8.

there is a uniqueu : T → A(ξ)×Ξ A(ξ́) that makes the whole diagram commutative. Hence
we obtain the condition:ψ

ξ́
◦ g = ψξ ◦ h.

We emphasize that ifψξ andψ
ξ́

are injective maps, then their pullback is isomorphic with

the intersectionA(ξ)∩A(ξ́). Then we can define the pasting map, which is an isomorphism,
as follows:

Ω
ξ,ξ́

: ψ
ξ́ξ
(A(ξ) ×Ξ A(ξ́)) → ψ

ξξ́
(A(ξ) ×Ξ A(ξ́))

by putting

Ω
ξ,ξ́

= ψ
ξξ́

◦ ψ−1
ξ́ξ

.

The following conditions hold: (i)Ωξ,ξ = 1ξ,1ξ := idξ, (ii) Ω
ξ,ξ́

◦ Ω
ξ́,

´́
ξ

= Ω
ξ,

´́
ξ

if

A(ξ) ∩ A(ξ́) ∩ A(
´́
ξ) �= 0, and (iii)Ω

ξ,ξ́
= Ω

ξ́,ξ
if A(ξ) ∩ A(ξ́) �= 0.

The pasting map assures thatψ
ξ́ξ
(A(ξ) ×Ξ A(ξ́)) andψ

ξξ́
(A(ξ) ×Ξ A(ξ́)) are going to

cover the same part of the quantum observable in a compatible way.
Given a system of measurement prelocalizations for quantum observableΞ ∈ OQ, and

correspondingly for the quantum event algebra over which it is defined, we call it asystem
of localizations if the above conditions are satisfied, and moreover, the quantum algebraic
structure is preserved.

We assert that the above compatibility conditions provide the necessary relations for
understanding a system of measurement localizations for a quantum observable as a structure
sheaf or sheaf of Boolean coefficients consisting of local Boolean observables. This is
connected to the fact that systems of measurement localizations are actually subfunctors
of the representable Hom-functorR(Ξ) of the formS : Oop

B → Sets, namely for allξ in
OB satisfyS(ξ) ⊆ [R(Ξ)](ξ). In this sense the pullback compatibility conditions express
gluing relations on overlaps of Boolean domain covers and convert a presheaf subfunctor of
the Hom-functor into a sheaf. The concept of sheaf expresses exactly the pasting conditions
that local modeling objects have to satisfy, namely, the way by which local data, providing
Boolean coefficients obtained in measurement situations, can be collated.
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The comprehension of a measurement localization system as a sheaf of Boolean co-
efficients permits the conception of a quantum observable (or of its associated quantum
event algebra) as a generalized manifold, obtained by pasting theψ

ξ́ξ
(A(ξ) ×Ξ A(ξ́)) and

ψ
ξξ́
(A(ξ) ×Ξ A(ξ́)) covers together by the transition functionsΩ

ξ,ξ́
. In this perspective

the generalized manifold, which represents categorically a quantum observable object, is
understood as a colimit in the category of elements of a sheaf of Boolean coefficients that
contains compatible families of modeling Boolean observables.

6. Isomorphic representations of quantum observables by Boolean localization
systems

The ideas developed in the previous section may be used to provide the basis for the
representation of quantum observables and their associated quantum event algebras in terms
of Boolean covering systems, if we pay attention to the counit of the established adjunction,
denoted by the vertical map inFig. 9.

The diagram suggests that the representation of a quantum observableΞ in OQ and,
subsequently, of a quantum event algebraL in L, in terms of a coordinatization system of
measurement localizations, consisting of Boolean coefficients, is full and faithful, if and
only if the counit of the established adjunction, restricted to that system, is an isomorphism,
that is, structure preserving, 1–1 and onto[14]. It is easy to see that the counit of the
adjunction, restricted to a system of measurement localizations is a quantum algebraic
isomorphism, iff the right adjoint functor is full and faithful, or equivalently, iff the cocone
from the functorA ◦ GR(Ξ) to the quantum observableΞ is universal for each objectΞ in
OQ [2,3]. In the latter case we characterize the coordinatization functorA : OB → OQ or,
equivalently, the functorA : B→ L such thatFig. 3commutes, a proper modeling functor.
As a consequence if we consider asB the category of Boolean subalgebras of a quantum
event algebraL of ordinary quantum mechanics, that is an orthomodularσ-orthoposet of
orthogonal projections of a Hilbert space, together with a proper modeling inclusion functor
A : B→ L, the counit of the established adjunction restricted to a system of measurement
localizations is an isomorphism.

The physical significance of this representation lies on the fact that the whole information
content in a quantum event algebra is preserved by every covering Boolean system, qualified
as a system of measurement localizations. The preservation property is established by the
counit isomorphism. It is remarkable that the categorical notion of adjunction provides the

Fig. 9.
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appropriate formal tool for the formulation of invariant properties, giving rise to preservation
principles of a physical character.

If we return to the intended representation, we realize that the surjective property of
the counit guarantees that the Boolean domain covers, being themselves objects in the
category of elementsG(R(L), B), cover entirely the quantum event algebraL, whereas its
injective property guarantees that any two covers are compatible in a system of measurement
localizations. Moreover, since the counit is also a homomorphism, it preserves the algebraic
structure.

In the physical state of affairs, each cover corresponds to a set of Boolean events actual-
ized locally in a measurement situation. The equivalence classes of Boolean domain covers
represent quantum events inL through compatible coordinatizations by Boolean coeffi-
cients. Consequently, the structure of a quantum event algebra is being generated by the
information that its structure preserving maps, encoded as Boolean covers in measurement
localization systems, carry as well as their compatibility relations.

7. Implications for quantum logic

The covering process leads naturally to a contextual description of quantum events (or
quantum propositions) with respect to Boolean reference frames of measurement and fi-
nally to a representation of them as equivalence classes of unsharp Boolean events. The
latter term is justified by the fact that, in case,L signifies a truth-value structure, each cover
can be interpreted as an unsharp Boolean algebra of events corresponding to measurement
of observableΞ. More concretely, since covers are maps [ψB]Ξ : A(BΞ) → L, each
Boolean event realized in the domainBΞ, besides its true or false truth-value assignment
in a measurement context related to the outcome of an experiment that has taken place,
is also assigned a truth value representing its relational information content for the com-
prehension of the coherence of the whole quantum structure, measured by the degrees in
the posetL or, equivalently, by the degrees assigned to its poset structure of localization
systems.

Between these two levels of truth-value assignment there exists an intermediate level,
revealed by the instantiation of the Boolean power construction in the context of the
Grothendieck fibration technique. This intermediate level refers to a truth-value assign-
ment to propositions describing the possible behavior of a quantum system in a specified
Boolean context of observation without having passed yet an experimental test.

We may remind that the fibration induced by a presheaf of Boolean algebrasP provides
the category of elements ofP, denoted byG(P,B). Its objects are all pairs(B, p), and its
morphisms(B́, ṕ) → (B, p) are those morphismsu : B́ → B of B for which pu = ṕ.
Projection on the second coordinate ofG(P,B) defines a functorGP : G(P,B) → B. If
B is an object ofB, the inverse image underGP of B is simply the setP(B). As we have
explained, the objects of the category of elementsG(R(L), B) constitute Boolean domain
covers for measurement and have been identified as Boolean reference frames on a quantum
observable structure.

We notice that the set of objects ofG(R(L),B) consists of all the elements of all the sets
R(L)(B) and, more concretely, has been constructed from the disjoint union of all the sets of
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the above form, by labeling the elements. The elements of this disjoint union are represented
as pairs(B,ψB : A(B) → L) for all objectsB of B and elementsψB ∈ R(L)(B).

Taking into account the projection functor, defined above, this set is actually a fibered
structure. Each fiber is a set defined over a Boolean algebra relative to which a measurement
result is being coordinatized. If we denote by(ψB, q) the elements of each fiber, withψB ∈
R(L)(B) andq ∈ A(B), then the set of maps

(ψB, q) → q

can be interpreted as the Boolean power of the set

ϒB = {(ψB, q), ψB ∈ R(L)(B), q ∈ A(B)}
with respect to the underlying Boolean algebraB [15].

The Boolean power construction forces an interpretation of the Boolean algebra relative
to which a measurement result is being coordinatized, as a domain of local truth values
with respect to a measurement that has not taken place yet. Moreover, the set of local
measurement covers defined overB is considered as a Boolean-valued set. In this sense, the
local coordinates corresponding to a Boolean domain of measurement may be considered
as Boolean truth values.

We further observe that the set of objects ofG(R(L), B) consists of the disjoint union
of all the fibersϒB, denoted byϒ = �BϒB. This set can also acquire a Boolean power
interpretation as follows.

We define a binary relation on the setϒ according to:

(ψ
B́
, q́) ⊗ (ψB, q) iff ∃η : ψ

B́
→ ψB : η(q́) = q,ψ

B́
= ψB ◦ η.

It is evident that for anyη : B́ → B we obtain:(ψB ◦ η, q́) ⊗ (ψB, η(q́)). Furthermore,
we require the satisfaction of the compatibility relations that are valid in a system of lo-
calizations. Then it is possible to define the Boolean power of the setϒ with respect to
the maximal Boolean algebra belonging to such a compatible system of localizations. We
may say that the Boolean coordinates, interpreted as local Boolean truth values via the
Boolean power construction, reflect a relation of indistinguishability due to overlapping of
the corresponding covers.

The viewpoint of Boolean-valued sets has far reaching consequences regarding the in-
terpretation of quantum logic and will be discussed in detail in a future work from the
perspective of Lawvere’s topoi[16]. At the present stage, we may say that the logical in-
terpretation of the Boolean fibration method, seems to substantiate Takeuti’s and Davis’s
approach to the foundations of quantum logic[17,18], according to whom, quantization of
a proposition of classical physics is equivalent to interpreting it in a Boolean extension of a
set theoretical universe, whereB is a complete Boolean algebra of projection operators on
a Hilbert space. In the perspective of the present analysis, we may argue that the fibration
technique in the presheaf of Boolean algebrasG(R(L), B) provides the basis for a natural
interpretation of the logic of quantum propositions, referring to the possible behavior of
a quantum system in a concrete localization context with respect to an experimental test
that has not been actualized yet, in terms of a truth-value assignment, assuming existence
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in the corresponding Boolean context of a covering system, and realized in terms of local
valuations on the Boolean coordinates of the specified cover.

8. Differential geometry in the quantum regime

The application of Stone representation theorem for Boolean algebras permits the re-
placement of Boolean algebras by fields of subsets of a measurement space, providing in
this manner a natural operationalization of the meaning of Boolean covers. Thus, if we re-
place each Boolean algebraB in B by its set-theoretical representation [Σ,BΣ], consisting
of a local measurement spaceΣ and its local field of subsetsBΣ, it is possible to define local
measurement space charts(BΣ,ψBΣ : A(BΣ) → L) and corresponding space localization
systems for quantum observableΞ over quantum event algebraL in L. Topologically, each
local space is considered as a compact Hausdorff space, the compact open subsets of which
are the maximal filters or the prime ideals of the underlying Boolean algebra.

From local measurement space charts(BΣ,ψBΣ : A(BΣ) → L) we may form their
equivalence classes which, modulo the conditions for compatibility on overlaps, will repre-
sent a single quantum event inL. Under these circumstances, we may interpret the equiva-
lence classes of local space chartsψBΣ ⊗a, a ∈ A(BΣ) as the experimental actualizations of
the quantum events inL, corresponding to measurement of observablesΞ. In the operational
framework two local space representations of a quantum observable satisfy the compati-
bility condition on overlapping regions, iff their associated measurements are equivalent to
measurements sharing the same experimental arrangement.

We also observe that the inverse of a local space representation of a quantum observable
plays the role of a random variable on this local spaceΣ. Consequently, every quantum
observable may be considered locally, as a measurable function defined over the local mea-
surement spaceΣ. Phrased differently, random variables defined over local spaces provide
Boolean coordinatizations for a quantum observable and moreover satisfy compatibility
conditions on the overlaps of their local domains of definition. Subsequently, if we con-
sider the collection of measurable functions defined over the category of local spaces we
obtain a sheaf of Boolean coefficients for the measurement of a quantum observable, such
that the latter is represented by a colimit construction in the category of elements of this
sheaf. Addition and multiplication overR induce the structure of a sheaf ofR-algebras
(or a sheaf of rings). A natural question that arises in this setting is if it could be possible
to consider the above sheaf ofR-algebras as the structure algebra sheaf of a generalized
space. From a physical point of view, this move would reflect the appropriate generaliza-
tion of the arithmetics, or sheaves of coefficients, that have to be used in the transition from
the classical to the quantum regime. The appropriate framework to accommodate structure
sheaves of the above form is abstract differential geometry (ADG), developed by Mallios in
[19,20]. ADG is an extension of classical differential geometry according to which, instead
of smooth functions, one starts with a general sheaf of algebras. The important thing is that
these sheaves of algebras, which in our perspective correspond to quantum observables, can
be interrelated with appropriate differentials, interpreted as Leibniz sheaf morphisms. This
interpretation is suited to the development of differential geometry in the quantum regime
and will be carried out at a later stage.
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9. Conclusions

The conceptual root of the proposed relativistic perspective on quantum structure, estab-
lished by systems of Boolean measurement localization systems is located on the physical
meaning of the adjunction between presheaves of Boolean observables and quantum ob-
servables.

Let us consider thatSetsB
op

is the universe of Boolean observable event structures mod-
eled inSets, or else the world of Boolean windows, andL that of quantum event structures.
In the proposed interpretation the functorL : SetsB

op → L can be comprehended as a trans-
lational code from Boolean windows to the quantum species of event structure, whereas
the functorR : L→ SetsB

op
as a translational code in the inverse direction. In general, the

content of the information is not possible to remain completely invariant translating from
one language to another and back. However, there remain two ways for a Boolean event
algebra variable setP to communicate a message to a quantum event algebraL. Either the
information is given in quantum terms withP translating, which can be represented as the
quantum homomorphismLP → L or the information is given in Boolean terms withL
translating, that in turn, can be represented as the natural transformationP → R(L). In the
first case, from the perspective ofL information is being received in quantum terms, while
in the second, from the perspective ofP information is being sent in Boolean terms. The
natural bijection then corresponds to the assertion that these two distinct ways of communi-
cating are equivalent. Thus, the physical meaning of the adjoint situation signifies a two-way
dependency of the involved languages in communication with respect to the variation of
the information collected in localization contexts of measurement. More remarkably, the
representation of a quantum observable as a categorical colimit, resulting from the same
adjunctive relation, reveals an entity that can admit a multitude of instantiations, specified
mathematically by different coordinatizing Boolean coefficients in Boolean localization
systems.

The underlying invariance property specified by the adjunction is associated with the
informational content of all these phenomenically different instantiations in distinct mea-
surement contexts, and can be formulated as follows: the informational content of a quantum
observable structure remains invariant with respect to Boolean domain coordinatizations if
and only if the counit of the adjunction, restricted to covering systems, qualified as Boolean
localization systems, is an isomorphism. Thus, the counit isomorphism provides a cate-
gorical equivalence, signifying an invariance in the translational code of communication
between Boolean windows, acting as localization devices for measurement, and quantum
systems.
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